具有提高可传递性的对抗性攻击 - 在已知模型上精心制作的对抗性示例的能力也欺骗了未知模型 - 由于其实用性,最近受到了很多关注。然而,现有的可转移攻击以确定性的方式制作扰动,并且常常无法完全探索损失表面,从而陷入了贫穷的当地最佳最佳效果,并且遭受了低传递性的折磨。为了解决这个问题,我们提出了细心多样性攻击(ADA),该攻击以随机方式破坏了不同的显着特征以提高可转移性。首先,我们将图像注意力扰动到破坏不同模型共享的通用特征。然后,为了有效避免局部优势差,我们以随机方式破坏了这些功能,并更加详尽地探索可转移扰动的搜索空间。更具体地说,我们使用发电机来产生对抗性扰动,每个扰动都根据输入潜在代码而以不同的方式打扰。广泛的实验评估证明了我们方法的有效性,优于最先进方法的可转移性。代码可在https://github.com/wkim97/ada上找到。
translated by 谷歌翻译
由于3D格式存储的大量信息,3D深度学习是一个越来越多的感兴趣领域。三角形网格是不规则,不均匀3D对象的有效表示。但是,由于其高几何复杂性,网格通常具有挑战性的注释。具体而言,为网格创建细分面具是乏味且耗时的。因此,希望使用有限标记的数据训练分割网络。自我监督的学习(SSL)是一种无监督的表示学习的一种形式,它是对完全监督学习的替代方法,可以减轻监督的培训负担。我们提出了SSL-MESHCNN,这是一种用于网格分割的预训练CNN的自我监督的对比学习方法。我们从传统的对比学习框架中汲取灵感来设计专门针对网格的新颖对比度学习算法。我们的初步实验显示了将网状分割所需的重型标记数据需求减少至少33%的有希望的结果。
translated by 谷歌翻译
贝叶斯神经网络在许多应用程序问题(包括不确定性量化)中成功设计和优化了强大的神经网络模型。但是,随着最近的成功,对贝叶斯神经网络的信息理论理解仍处于早期阶段。相互信息是贝叶斯神经网络中一种不确定性度量的示例,以量化认知不确定性。尽管如此,尚无分析公式来描述它,这是了解贝叶斯深度学习框架的基本信息指标之一。在本文中,我们通过利用点过程熵的概念来得出模型参数和预测输出之间相互信息的分析公式。然后,作为应用程序,我们通过证明我们的分析公式可以在实践中进一步提高主动学习的性能,从而讨论DIRICHLET分布的参数估计,并显示其在主动学习不确定性度量中的实际应用。
translated by 谷歌翻译
Acquiring labeled data is challenging in many machine learning applications with limited budgets. Active learning gives a procedure to select the most informative data points and improve data efficiency by reducing the cost of labeling. The info-max learning principle maximizing mutual information such as BALD has been successful and widely adapted in various active learning applications. However, this pool-based specific objective inherently introduces a redundant selection and further requires a high computational cost for batch selection. In this paper, we design and propose a new uncertainty measure, Balanced Entropy Acquisition (BalEntAcq), which captures the information balance between the uncertainty of underlying softmax probability and the label variable. To do this, we approximate each marginal distribution by Beta distribution. Beta approximation enables us to formulate BalEntAcq as a ratio between an augmented entropy and the marginalized joint entropy. The closed-form expression of BalEntAcq facilitates parallelization by estimating two parameters in each marginal Beta distribution. BalEntAcq is a purely standalone measure without requiring any relational computations with other data points. Nevertheless, BalEntAcq captures a well-diversified selection near the decision boundary with a margin, unlike other existing uncertainty measures such as BALD, Entropy, or Mean Standard Deviation (MeanSD). Finally, we demonstrate that our balanced entropy learning principle with BalEntAcq consistently outperforms well-known linearly scalable active learning methods, including a recently proposed PowerBALD, a simple but diversified version of BALD, by showing experimental results obtained from MNIST, CIFAR-100, SVHN, and TinyImageNet datasets.
translated by 谷歌翻译
我们为图像分类提出了一个高度数据效率的主动学习框架。我们的新框架结合了:(1)卷积神经网络的无监督表示学习和(2)Gaussian Process(GP)方法,以实现高度数据和标记有效分类。此外,由于没有标签和(2)GP的贝叶斯性质所学的(1)功能,这两个元素对普遍且具有挑战性的阶级不平衡问题的敏感性不太敏感。 GP提供的不确定性估计可以通过根据不确定性对样本进行排名和选择性标记样品来表现出较高的不确定性,从而实现主动学习。我们将这种新颖的组合应用于Covid-19胸部X射线分类和Nerthus结肠镜检查分类的严重不平衡病例。我们只证明这一点。需要10%的标记数据来达到培训所有可用标签的准确性。我们还将模型架构和建议的框架应用于具有预期成功的更广泛的数据集。
translated by 谷歌翻译
While witnessing the noisy intermediate-scale quantum (NISQ) era and beyond, quantum federated learning (QFL) has recently become an emerging field of study. In QFL, each quantum computer or device locally trains its quantum neural network (QNN) with trainable gates, and communicates only these gate parameters over classical channels, without costly quantum communications. Towards enabling QFL under various channel conditions, in this article we develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs), and propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs. Compared to the existing depth-fixed QNNs, training the depth-controllable eSQNN architecture is more challenging due to high entanglement entropy and inter-depth interference, which are mitigated by introducing entanglement controlled universal (CU) gates and an inplace fidelity distillation (IPFD) regularizer penalizing inter-depth quantum state differences, respectively. Furthermore, we optimize the superposition coding power allocation by deriving and minimizing the convergence bound of eSQFL. In an image classification task, extensive simulations corroborate the effectiveness of eSQFL in terms of prediction accuracy, fidelity, and entropy compared to Vanilla QFL as well as under different channel conditions and various data distributions.
translated by 谷歌翻译
在过去的十年中,我们看到了工业数据,计算能力的巨大改善以及机器学习的重大理论进步。这为在大规模非线性监控和控制问题上使用现代机器学习工具提供了机会。本文对过程行业的应用进行了对最新结果的调查。
translated by 谷歌翻译
特征相似性匹配将参考框架的信息传输到查询框架,是半监视视频对象分割中的关键组件。如果采用了汇总匹配,则背景干扰器很容易出现并降低性能。徒匹配机制试图通过限制要传输到查询框架的信息的量来防止这种情况,但是有两个局限性:1)由于在测试时转换为两种匹配,因此无法完全利用过滤匹配的匹配; 2)搜索最佳超参数需要测试时间手动调整。为了在确保可靠的信息传输的同时克服这些局限性,我们引入了均衡的匹配机制。为了防止参考框架信息过于引用,通过简单地将SoftMax操作与查询一起应用SoftMax操作,对查询框架的潜在贡献得到了均等。在公共基准数据集上,我们提出的方法与最先进的方法达到了可比的性能。
translated by 谷歌翻译
机器学习(ML)为生物处理工程的发展做出了重大贡献,但其应用仍然有限,阻碍了生物过程自动化的巨大潜力。用于模型构建自动化的ML可以看作是引入另一种抽象水平的一种方式,将专家的人类集中在生物过程开发的最认知任务中。首先,概率编程用于预测模型的自动构建。其次,机器学习会通过计划实验来测试假设并进行调查以收集信息性数据来自动评估替代决策,以收集基于模型预测不确定性的模型选择的信息数据。这篇评论提供了有关生物处理开发中基于ML的自动化的全面概述。一方面,生物技术和生物工程社区应意识到现有ML解决方案在生物技术和生物制药中的应用的限制。另一方面,必须确定缺失的链接,以使ML和人工智能(AI)解决方案轻松实施在有价值的生物社区解决方案中。我们总结了几个重要的生物处理系统的ML实施,并提出了两个至关重要的挑战,这些挑战仍然是生物技术自动化的瓶颈,并减少了生物技术开发的不确定性。没有一个合适的程序;但是,这项综述应有助于确定结合生物技术和ML领域的潜在自动化。
translated by 谷歌翻译
相机陷阱,无人观察设备和基于深度学习的图像识别系统在收集和分析野生动植物图像方​​面的努力大大减少了。但是,通过上述设备收集的数据表现出1)长尾巴和2)开放式分布问题。为了解决开放设定的长尾识别问题,我们提出了包括三个关键构件的时间流面膜注意网络:1)光流模块,2)注意残留模块,3)一个元物质分类器。我们使用光流模块提取顺序帧的时间特征,并使用注意残留块学习信息表示。此外,我们表明,应用元装置技术可以在开放式长尾识别中提高该方法的性能。我们将此方法应用于韩国非军事区(DMZ)数据集。我们进行了广泛的实验以及定量和定性分析,以证明我们的方法有效地解决了开放式的长尾识别问题,同时对未知类别进行了强大的态度。
translated by 谷歌翻译